

THE APPLICATION OF TECHNOLOGY ACCEPTANCE MODEL (TAM) IN VERIFYING “DRAIV” USAGE INTENTION

Junita Safitri

Institut Agama Islam Negeri Langsa

Correspondence Email: junitasafitri@iainlangsa.ac.id

Received: 20 Oktober 2023 Accepted: 31 Agustus 2024 Published: 31 Agustus 2024

Article Url: <https://journal.iainlangsa.ac.id/index.php/ebis/article/view/7181>

Abstract

This research is aim to verify the affecting Factor of Attitude Platform Usage , contemporary investigating the dominant factor that determines The Platform Usage Intention. Hypothesis testing were conducted using Quantitative method. The Research was conducted using an online survey approach. The Sample comprised 218 customers. The data collected were analyzed using PLS (Partial Least Square) Structural Equation Model. This Paper attempted to examine the customer response about the Kind of Courier Service Business that provide an organized system which operate in Indonesia by using TAM. The Findings indicated that technology usage was predicted by Behavioral Intention, while Behavioral Intention influenced by Attitude and Perceived Usefulness, when attitude and perceived usefulness were predicted by Perceived ease of use. Perceived Ease of Use Equals to Perceived Usefulness. While Perceived usefulness failed to affect attitude toward technology usage

Keywords: TAM, Path Analysis, Draiv Platform, Usage Intention,Actual Usage

THE INTRODUCTION

Pandemic that happened worldwide has changed numerous things in the world even in Indonesia. The COVID-19 pandemic is believed to have started in late 2019, with the first cases reported in Wuhan, China. However, it wasn't until January 2020 that the outbreak gained international attention, and the World Health Organization (WHO) declared it a global health emergency on January 30, 2020. The WHO officially declared the COVID-19 outbreak a pandemic in March 2020.

The COVID-19 pandemic has had a devastating impact on societies and economies worldwide. According to the Wellcome Global Monitor 2020: Covid-19 report, the pandemic has disproportionately affected low-income countries and people with low incomes across all countries. Almost half (45%) of workers

Creative Commons Attribution-Noncommercial 4.0 International
(CC BY-NC 4.0)

in low and lower-middle-income countries lost a job or business due to the pandemic, compared to just 10% of people in high-income countries. A large percentage of companies thereby announced their bankruptcy and some just had to lay off their employees. Triggering a higher rate of unemployment. According to the Central Agency on Statistics in February 2022 there were about 954.6 thousand people of productive age who lost their jobs due to Covid 19 Pandemic.

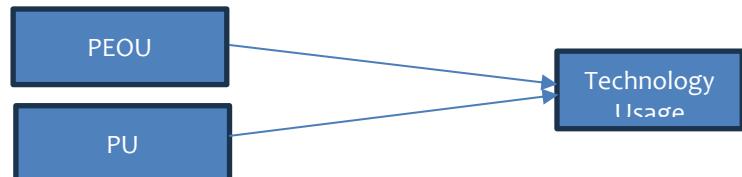
The newly unemployed have to consider how to preserve the cash flow in their household. This circumstance triggered numerous new businesses in the neighbourhood. The valuable signal from provider and supportive social media platform increases business chance. Despite the fact that this business cannot be categorized as a startup due to sizing. It becomes a new market niche with the solution for society during the pandemic. Customer feels reluctant to leave their houses prefer to stay indoors. The problem is how to meet all the required goods to be delivered safely without having to leave the house? This problem answered by courier service which later become very well-known after the pandemic over. Courier Services enable customer to meet all their needs without having to depart the house. Application that serve this kind of courier activity and gather the jobseeker with the exact requirement is the best solution to answer the needs that hopefully could satisfy the customer. The question is how many customers that really think this technology is necessary, and how many of them willing to use this platform. How many of them will harvest the perceived value of using this Platform in their daily life. After pandemic will they back to their routine without technology? Technology will not useful if customer do not use it. This paper wrote to find out the reality about technology usage intention among the college student. The age that tends to create new needs and experience will be very interesting as a subject for this research.

The Courier Service is not a new kind of business in Indonesia. This business commenced by Nadiem Makarim entitled GOJEK established in 2009. GOJEK is

an application that introduced GOFOOD, which later became one of the most frequently inquired ones. GOFOOD serves delivery food to the door, cooperating with numerous restaurants. The Courier Service for food delivery is very popular due to the easiness of the process. One of the applications that serves the same purpose adopts a similar concept is 'DRAIV'.

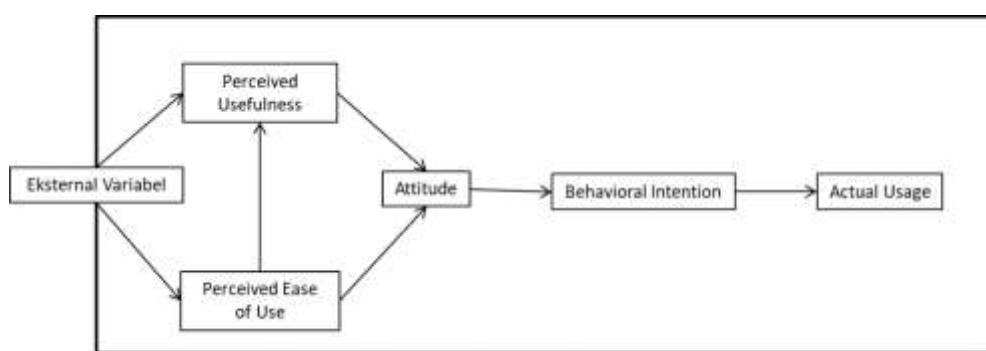
Draiv is a brand of online transportation service that has brought a lot of benefits and profits to society. This application is the original creation of Indonesia's youth with a great vision to be part of the national market. Moreover, Draiv serves as an online transportation (Draivbike/draivcar), food delivery (Draivfood), goods delivery (draivsend), shopping (draivshop), game voucher (draivVoucher) and other services that Draiv offers. Draiv was introduced in Indonesia as a market challenger. Nowaday Draiv can be access from some provinces in Indonesia.

Draiv have not been used by numerous users due to the fact that this application in brand new. These circumstances elucidated the wider market share. The application has already been downloaded by as many as 100,000+ users. Even though this application is still new, its existence is highly organized due to the platform basis. This research was conducted to examine the influencing factors of Draiv's usage intention since this application is still new. The researcher adopted the Technology Acceptance Model (TAM), which is feasible and appropriate to measure Draiv's usage intention and subsequently examine Draiv's actual daily usage in customer's life.


Nevertheless, the Technology Acceptance Model (TAM) is still the best option for measuring technology adoption. Numerous studies have adopted the basic model created by Davis in 1989 to investigate the influencing factors of customers in using Halal Industry (Noor, 2024). TAM has also been used to compare Moodle and Google Classroom (Santiadi et al., 2024). TAM has been used to measure Student Acceptance of AI-Based Feedback systems (Otto et al., 2024).TAM has been used in health communication and technology adoption (Magsamen-Conrad et al., 2022). TAM also has been used in measuring

logistics and customs digitalization practices assessment (Jaleta & Tulu, 2024). TAM also used in exploring Tech Acceptance by older persons and caregiver (Felber et al., 2024). TAM used to measure consumer good acceptance, enhancing product development (Förster, 2024). TAM used to enhance smart acceptance among aging community in gangzhou (Jinglong et al., 2024).

The purpose of this research is to investigate the influencing factors of Platform Actual Usage (AU) based on the Technology Acceptance Model (TAM). This research sequentially examined the ability Attitude Toward Using (A), Perceived Usefulness (U) and Perceived ease of use (EOU) Draiv Platform in predicting the usage intention of Draiv Platform Based on Technology Acceptance Model (TAM).


LITERATURE REVIEW

Technology Acceptance Model (TAM) was initially introduced by Davis on 1989. TAM was an adaptation from Theory of Reason Action (TRA) which was introduced by Icek and Azjen (Fishbein & Ajzen, 2011) (Ajzen & Fishbein, 1974). This theory was an application that delivered from the improvement of Theory of Reason Action (TRA) specifically used to measure user acceptance in adopting information system Technology Acceptance Model (TAM) aimed to explain and predict user's acceptance of technology adoption. Technology Acceptance Model (TAM) was form of TRA improvement that was convinced able to predict user's technology acceptance based on the two determinant which were Perceived usefulness and Perceived ease of use. The initial construct that was created by Davis in his research has been shown below. The determinant of Technology usage which used this early model were just Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) and Technology usage as dependent variable. (Davis, 1989).

Picture 1. The Original TAM (Davis, 1989)

TAM uses Theory of Reason Action (TRA) as a theoretical basis for specifying the causal linkage between two beliefs; Perceived Usefulness (PU) and Perceived Ease of Use (PEOU), User's Attitude, intention and actual computer adoption behavior (Azjen & Fishbein, 1980). The value of Technology Acceptance Model (TAM) is the instrument that consistent with the reputable measurement, parsimony and empirical power ((Davis, 2010)). Technology Acceptance Model (TAM) usually use to understand the correlation between human and technology acceptance through Perceived Usefulness and Perceived Ease of Use which are crucial constructs to predict technology acceptance.

Picture 2. Technology Acceptance Model (TAM) as an adaptation of Theory of Reasoned Action (TRA)(Davis et al., 1989)

Perceived Usefulness (PU), Perceived Ease of use (PEOU), Behavioral Intention (BI), Attitude (A) and Actual Usage (AU)

One of the most difficult problems in information system (IS) research has been figuring out why people embrace or reject computers (Swanson, 1988). Why did users of the system use it? Initially, people often use the program or

system to the extent that they think it will improve their ability to do their jobs. This is known as perceived utility (PU). Secondly, even if the user thought it was helpful, they still need to confirm that it was simple to use. The system's advantages must exceed the application's drawbacks. The degree to which a person thinks that adopting the system would improve his performance at work is known as Perceived Usefulness (PU). The term "perceived ease of use" (PEOU) describes how easy a system can be adopted. Perceived Ease of Use (PEOU) refers to the degree to which a person believes that using a particular system would be free of effort. Effort defined as a finite resource that a person may allocate to the various activities.(Davis, 2010). Information System (IS) investigators have suggested intention models from social psychology as a potential basic theory for research on the determinant of user behaviour. Behavioural Intention (BI) is measure of the strength of one's intention to perform a specified behaviour (Fishbein & Ajzen, 2011). Attitude (A) is defined as an individual's positive or negative feelings (evaluative affect) about performing the target behaviour.(Davis et al., 1989). Actual system usage defined as an external respond that can be measured by real usage (Davis, 1989).

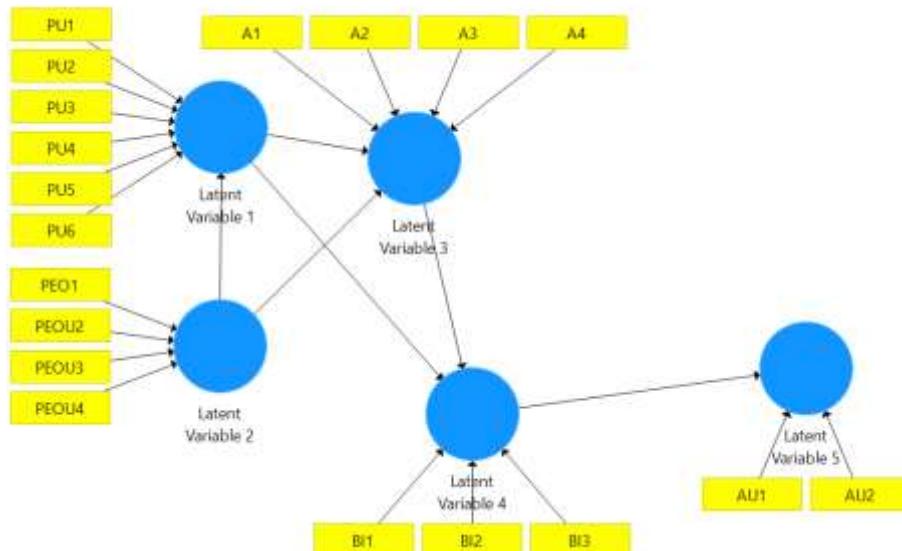
Theoretical Framework

This Research was conducted to replicate the research that once done by Davis on 1989 by applicating Technology Acceptance Model (TAM) using Theory of Reasoned Action (TRA) (Fishbein & Ajzen, 2011). It was done to verify the dominant factor that influence the usage intention and the actual usage of Draiv platform in Indonesia The model commence with verifying Actual Usage (AU) was influenced by Behaviour Intention (BI) (Davis et al., 1989). TAM postulates that computer usage is determined by behaviour intention (BI) but in TAM Behaviour Intention (BI) is viewed being jointly determined by the person's attitude toward using (A) the system and Perceived Usefulness (U). The linkage of Attitude toward using (A) and behaviour intention (BI) in TAM

implied all else being equal, people form intention to perform behaviour intention toward which they have positive affect. TAM's perceived usefulness (U) and perceived ease of use (EOU) are postulated a prior, and are meant to be fairly general determinants of user acceptance. In this research we exclude the external variables since Ease of use (EOU) equals to external variables .

$$BI = A + U$$

$$AU = BI + PU$$


Similar to Theory of Reasoned Action (TRA), Technology Acceptance Model (TAM) postulates that computer usage is determined by Behavioral Intention (BI) , but differs in that Behavioral intention (BI) is viewed being jointly determined by the person's attitude toward using the system (A) and Perceived Usefulness (U). While the relationship between Attitude (A) and Behavioral Intention (BI) in Technology Acceptance Model (TAM) implied all else being equal, people form intentions to perform behaviours toward which they have positive affect.

$$A=U + EOU$$

In Technology Acceptance Model (TAM), Perceived Usefulness (U) and Perceived Ease Of Use (EOU) are postulated a prior, and are general determinants of our Acceptance. External Variables as precedent variables in early model considered as system features,menu,touch screen to enhance usability. In this research we exclude External Variable since Perceived Ease of Use (EOU) equals to External Variable(Benbasat & Dexter, 1986). The proposed model was elucidated below :

$$U = EOU + Ext$$

$$EOU = External Var$$

Picture 2. The Research Framework

(Source: Processed/Research 2023)

The Variables:

Latent Variable 1 : Perceived Usefulness (U)

Latent Variable 2 : Perceived Ease of Use (EOU)

Latent Variable 3 : Attitude (A)

Latent Variable 4 : Behavioural Intention (BI)

Latent Variable 5 : Actual Usage (AU)

Research Hypothesis

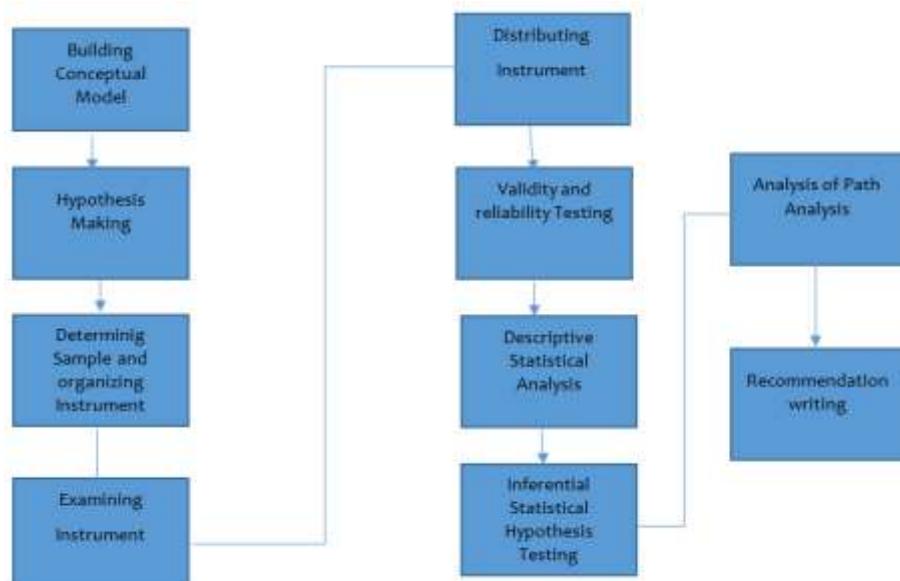
This research investigation based on Conceptual Framework. The conceptual framework built from the urgency of the research thus we did not adopt all variables to count on the measured variables because the research object had not been recognized widely by the population. We could conclude the research hypothesis were:

H1 : Actual Usage (AU) was influenced by behavioral Intention (BI) positively and Significantly, this hyphotheses was tested by (Davis et al., 1989)

H2 : Behavioural Intention (BI) was influenced by Attitude (A) positively and significantly, this hyphotheses was once tested by (Li et al., 2024).

H3 : Behavioural Intention (BI) was Influenced by Perceived usefulness

(U)Positively and significantly (de Andrés-Sánchez et al., 2024)


H4: Attitude (A) was influenced by Perceived Usefulness (U) Positively and Significantly, once tested by (Li et al., 2024) ,(Toros et al., 2024)

H5: Attitude (A) was influenced by Perceived Ease of Use (EOU) Positively and Significantly, once researched by (Li et al., 2024)

H6: Perceived Usefulness (U) was influenced by Perceived ease of Use (EOU) positively and Significantly(Li et al., 2024)

METHODOLOGY

The Research methodology process of this research can be seen below

Picture 3. Research Methodology

(Source: Processed/Research 2023)

Based on Picture 2 present each step of this research. There were three steps of this research which were; Designing Phase, Implementation Phase and Result Discussion Phase. First Phase consist of five steps: Building conceptual Model, hypothesis Making, Defining Sample, creating questionnaire and examining questionnaire. Implementation Phase consist of five primary process which were: Data collecting, validity and reliability testing, Descriptive Statistical Analysis and Inferential Statistical Analysis. The result and Discussion Phase were the last phase to conduct analysis and discussed the result of

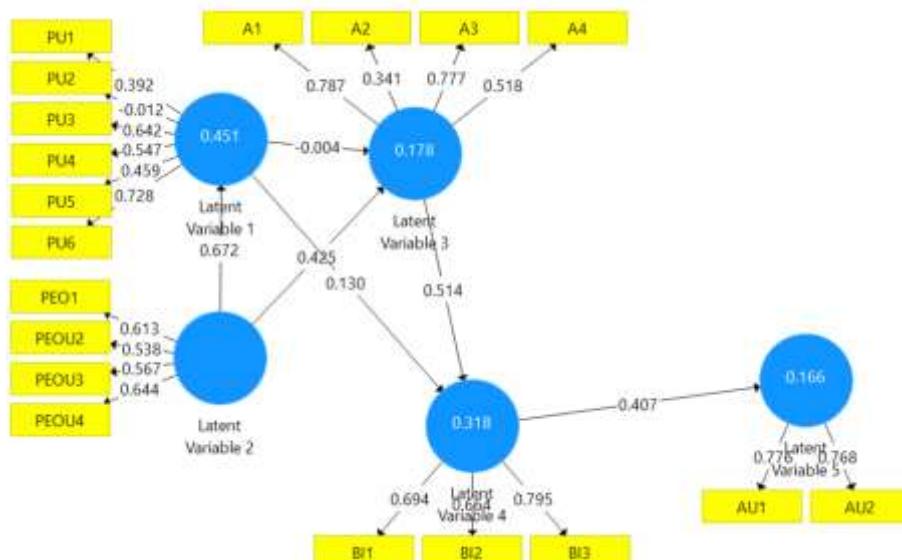
implementation phase. This phase consist of three parts which were: Descriptive analysis of hypothesis testing, interpretation of inner model and recommendation giving for correcting.

The analysis unit that measured were the online customer whose using the application. The Sampling Technique used was non probability Sampling and purposive sampling as collecting data method. The exact amount sample that collected were 218 customers.

Research Design

This Research category is Quantitative Causal Research Design which conducted to examine the possible causal relation among variable by using quantitative method where both exogenous and endogenous variable will operationalize the concept thus the variable can be measured quantitatively, Or in the other word our goal to examine the relationship among Perceived Ease Of Use (EOU), Perceived Usefulness (U), Attitude (A), Behavioral Intention (BI) and system Usage (AU). The questionnaire that used in the research were available on the tabel below:

Table 1. List of Statement


Variable	Code	Statement	Source
Perceived Usefulness	PU1 PU2 PU3 PU4 PU5 PU6	Using Draiv would enable me to accomplish more quickly Using Draiv would improve my study Performance Using Draiv in my study would increase my productivity Using Draiv would enhance my effectiveness on the study Using Draiv would make it easier to do my daily task I Would find Draiv useful in my study	(Davis, 2010)
Perceived Ease of Used	PEOU1 PEOU2 PEOU3 PEOU4	Learning to operate Draiv would be easy for me I Would find it easy to get Draiv to do what I want it to do It would be easy for me to become skillful at using Draiv My interaction with Draiv would be clear and understandable	(Venkatesh et al., 2003)
Attitude Toward Using	ATU1 ATU2 ATU3 ATU4	Using Draiv is a good idea Using Draiv is a good decision I Think I like using Draiv Using Draiv is an excitement	(Venkatesh et al., 2003)

Variable	Code	Statement	Source
Actual Usage	AU1 AU2	I Frequently using draiv I Am Using draiv each mealtime	
Behavioral Intention To Use	BITU1 BITU2 BITU3	I Intend using Draiv Someday I Intend to recommend others to use Draiv I Intend to Use Draiv More Often	

Tools Analysis

This research will be conducted by using SMART PLS (Partial Least Square) Method. PLS once used by Venkatesh (Venkatesh et al., 2003). In his research Venkatesh implemented the same method when investigating Unified Theory of Acceptance and Used of Technology (UTAUT). PLS can be used to examine the relation between dependent variable and independent variable. Measurement that involving numerous sample and simultaneously measure the validity and reliability thus this method very efficient for research. This research using Path Analysis for hypothesis testing due to its ability to examine proposition without manipulating variable (Sarwono, 2011).

RESULT AND DISCUSSION

Picture 4. The Research Structural Model
(Source: Processed/Research 2023)

After conducting Data Processing, the result were resume in the table below:

Tabel 2. Total Effect

	T- Statistic	P-Value
Perceived Usefulness (U) -Attitude (A)	0.041	0.967
Perceived Usefulness (U) – Behavioral Intention (BI)	2.049	0.041
Perceived Ease Of Use (EOU) – Perceived Usefulness (U)	19.773	0.000
Perceived Ease of Use (EOU) – Attitude (A)	4.725	0.000
Attitude (A) – Behavioral Intention (BI)	9.607	0.000
Behavioral Intention (BI) – Actual Usage (AU)	6.415	0.000

Source: Processed/Research 2023

Based on Table 2, we could conclude that Perceived Usefulness (PU) did not influence Attitude Toward Using (A) Draiv Platform, but Perceived Usefulness (PU) did influence Behavior Intention (BI) to use Draiv Platform positively and significantly. Table 2 also elucidated that Perceived Ease of use (PEOU) Influence Attitude Toward Using (ATU) positively and significantly, not only influence Attitude (A) but Perceived Ease of use (EOU) also influence Perceived Usefulness (U) . Attitude (A) influence Behavioral Intention (BI) positively and Significantly. Finally Behavioral Intention (BI) Influence Actual Usage (AU) of Draiv Platform positively and Significantly. These results show that almost all of research hypothesis were accepted. There were only one hypothesis that was denied. Since Perceived Usefulness (U) failed to influence Attitude (A) but Significantly influence Behavior Intention (BI) implied that when technology has proved its benefit then customer/ people would be happily show intention to use the technology without impression which show attitude changes.

Tabel 3. R-Square and Adjusted R Square

	R Square	R Square Adjusted
Perceived Usefulness	0.451	0.448
Attitude	0.178	0.170
Behavioral Intention	0.318	0.312
Actual Usage	0.166	0.162

Source: Processed/Research 2023

The Evidence that showed in Table 3 support the result five of the six hypothesis were accepted. Perceived Usefulness (U) were influenced by Perceived Ease of Use (EOU) ,while Attitude were significantly influenced by

Perceived Ease of use (EOU), Behavioral Intention (BI) were significantly influenced by Perceived usefulness (U) and Attitude (A) while Actual Usage were influenced by Behavioral Intention (BI).

Discussion

This research found The Actual Usage (AU) of Draiv Platform was influenced by Behavioral Intention (BI) (Davis et al., 1989). Perceived Usefulness (U) and Attitude (A) did influence Behavior Intention (BI) to use Draiv Application positively and significantly (de Andrés-Sánchez et al., 2024) (Noor, 2024) (Davis et al., 1989) (Ali & Warraich, 2024), (Li et al., 2024). This result was also found by(Sorce & Issa, 2021)(Sayekti & Putarta, 2016; Venkatesh & Davis, 2016; Vuković et al., 2019) at their research which measure the same construct and similar model. On this research Perceived Usefulness (U) and Attitude (A) did influence Behavior intention (BI) to use Draiv Application since this line of business is still new but the benefit that offered was crucial. The higher efficiency that reflected from saving more time by using their service truly influenced the Customers' behavior intention to use when they need it. The result above support the previous research that were done by a lot of researchers. This research also found that Attitude (A)was only influenced by Perceived Ease of use (EOU) (Ali & Warraich, 2024) (Davis, 1989). Attitude (A) in most of TAM Research was found to be influenced by Perceived Ease of Use (EOU) and Perceived Usefulness (U) consistently, but in this research Perceived Usefulness (U) did not influence Attitude (A), this case might be due to daily usage made people sometimes ignore the benefit, as long as the Platform easy to use then they will use it. Being Perceived Ease of Use (EOU) Equals to Perceived Usefulness (U)(Li et al., 2024) (Davis, 1989) (Ali & Warraich, 2024) .Perceived Usefulness (U) was influenced significantly by Perceived Ease of Use (EOU).

Table 2 also elucidated that Perceived Ease of use (PEOU) Influenced Attitude Toward Using (A) positively and significantly. The same evidence was

also found on the research that was done by (Agung Ayu Puty Andrina et al., 2022) (Davis, 1989) (Ali & Warraich, 2024) Perceived ease of use was reflected by the easiness of technology using. The Easiness of technology using only enough to build Attitude Toward Using (A) Draiv Application while Behavioral Intention (BI) to use Draiv Application was influenced by Attitude (A) and Perceived Usefulness (U). The influence of Perceived Ease Of Use (EOU) to Attitude (A) just elucidate the positive attitude toward the application but could not measure the willingness to Use or not use the application. Actual Usage (AU) itself was dominantly predicted by Behavioral Intention (BI) .

CONCLUSION

Based on the research that had been done, we could conclude that the actual usage of technology was predicted by behavioral intention, while behavioral intention in using platform was predicted jointly by attitude and perceived usefulness, in technology using behavior intention always supported by perceived usefulness because technology only can be assessed when user use it. Attitude toward using technology was predicted by perceived ease of use, easiness can be very powerful to affect customer in technology usage. Platform could be judged usefulness when it offered an easiness to adapt the technology, in this case easiness equals to usefulness. This research showed Technology usage was predicted by behavioral intention. Behavioral intention in technology usage always influenced by usefulness and attitude. While attitude predicted by perceived ease of use. Perceived ease of use influenced perceived usefulness. This research elucidated that easiness was the key for technology usage. Technology used due to easiness of technology usage. It did implied since its easy to use than it can be graded useful, in this case being easy equals to being useful. The Research exclude the external variables as a precedent of technology usage. The next research should include some external variables that can be influence technology usage. This Research elucidated that Perceived Ease of Use influenced attitude without perceived usefulness.

Perceived Ease of Use Equals to perceived Usefulness. Recommendation for the next research should examine the actual usage of application deeply. Additional construct namely promotion and competitive price strongly advice.

REFERENCES

Agung Ayu Puty Andrina, A., Jordan Kurniadi, C., Hendrika Kenang, I., & FCW Sutrisno, T. (2022). The role of technology acceptance model factors on purchase intention in e-commerce. *BISMA (Bisnis Dan Manajemen)*, 14(2), 160–176. <https://doi.org/10.26740/bisma.v14n2.p160-176>

Ajzen, I., & Fishbein, M. (1974). Factors Influencing Intentions and the Intention-Behavior Relation. *Human Relations*, 27(1), 1–15. <https://doi.org/10.1177/001872677402700101>

Ali, I., & Warraich, N. F. (2024). Meta-analysis of technology acceptance for mobile and digital libraries in academic settings using technology acceptance model (TAM). *Global Knowledge, Memory and Communication*. <https://doi.org/10.1108/GKMC-09-2023-0360>

Ajzen, I., & Fishbein. (1980). *Understanding Attitudes and Predicting Social Behavior* (Englewoods Cliffs, Ed.). NJ: Prentice Hall.

Benbasat, I., & Dexter, A. (1986). An investigation of the effectiveness of color and graphical information presentation under varying time constraints. *MIS Q.*, 10(1), 59–83. <https://doi.org/10.2307/248881>

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly: Management Information Systems*, 13(3), 319–339. <https://doi.org/10.2307/249008>

Davis, F. D. (2010). *Information Technology Introduction*. 13(3), 319–340.

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. *Management Science*, 35(8), 982–1003. <https://doi.org/10.1287/mnsc.35.8.982>

de Andrés-Sánchez, J., Arias-Oliva, M., Souto-Romero, M., & Gené-Albesa, J.

(2024). Assessing the Acceptance of Cyborg Technology with a Hedonic Technology Acceptance Model. *Computers*, 13(3). <https://doi.org/10.3390/computers13030082>

Felber, N. A., Lipworth, W., Tian, Y. J., Roulet Schwab, D., & Wangmo, T. (2024). Informing existing technology acceptance models: a qualitative study with older persons and caregivers. *European Journal of Ageing*, 21(1). <https://doi.org/10.1007/s10433-024-00801-5>

Fishbein, M. A., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. *Reading*, Addison-Wesley, May 1975.

Förster, K. (2024). Extending the technology acceptance model and empirically testing the conceptualised consumer goods acceptance model. *Helion*, 10(6). <https://doi.org/10.1016/j.heliyon.2024.e27823>

Jaleta, M. E., & Tulu, M. N. (2024). Logistics and Customs Digitalization Practices Assessment Using a Technology Acceptance Model. *Africa Journal of Business and Economics*, 2023(2), 2617–0086. <https://journals.ju.edu.et/index.php/jbeco>

Jinglong, L., Me, R. C., & Qisen, Z. (2024). Developing Age-oriented Design Framework with Technology Acceptance Model for Smart Appliances to improve Technology Acceptance by Ageing Community in Guangzhou China. *International Journal of Academic Research in Business and Social Sciences*, 14(4), 899–909. <https://doi.org/10.6007/IJARBSS/v14-i4/21233>

Li, X., Gao, Z., & Liao, H. (2024). An empirical investigation of college students' acceptance of translation technologies. *PLoS ONE*, 19(2 February). <https://doi.org/10.1371/journal.pone.0297297>

Magsamen-Conrad, K., Billotte Verhoff, C. C., & Dillon, J. M. (2022). Technology Acceptance Models. In *The International Encyclopedia of Health Communication* (pp. 1–8). Wiley. <https://doi.org/10.1002/9781119678816.iehc0776>

Noor, N. (2024). Technology acceptance model in halal industries: a systematic literature review and research agenda. *Journal of Islamic Marketing*,

April. <https://doi.org/10.1108/JIMA-02-2024-0077>

Otto, D., Assenmacher, V., Bente, A., Gellner, C., Waage, M., Deckert, R., Siepermann, M., Kammer, F., & Kuche, J. (2024). Student Acceptance of Ai-Based Feedback Systems: an Analysis Based on the Technology Acceptance Model (Tam). *INTED2024 Proceedings*, 1(March), 3695–3701. <https://doi.org/10.21125/inted.2024.0973>

Santiadi, S., Tri, A., Majiah, P., Deviani, N., Ruis, A., Annabel, K. F., & Karnalim, O. (2024). Analisis Perbandingan Moodle dan Google Classroom Menggunakan Technology Acceptance Model. 1. <https://doi.org/10.21460/jutei.81.288>

Sarwono, J. (2011). Mengenal Path Analysis (Sarwono). *Jurnal Ilmiah Manajemen Bisnis*, 11(2), 285–296.

Sayekti, F., & Putarta, P. (2016). PENERAPAN TECHNOLOGY ACCEPTANCE MODEL (TAM) DALAM PENGUJIAN MODEL PENERIMAAN SISTEM INFORMASI KEUANGAN DAERAH. 3, 196–209.

Sorce, J., & Issa, R. R. A. (2021). EXTENDED TECHNOLOGY ACCEPTANCE MODEL (TAM) FOR ADOPTION OF INFORMATION AND COMMUNICATIONS TECHNOLOGY (ICT) IN THE US CONSTRUCTION INDUSTRY. 26. <https://doi.org/10.36680/j.itcon.2021.013>

Toros, E., Asiksoy, G., & Sürütü, L. (2024). Refreshment students' perceived usefulness and attitudes towards using technology: a moderated mediation model. *Humanities and Social Sciences Communications*, 11(1). <https://doi.org/10.1057/s41599-024-02839-3>

Venkatesh, V., & Davis, F. D. (2016). Interventional factors affecting instructors adoption of e-learning system: A case study of palestine. *Journal of Theoretical and Applied Information Technology*, 83(1).

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly: Management Information Systems*, 27(3), 425–478. <https://doi.org/10.2307/30036540>

Vuković, M., Pivac, S., & Kundid, D. (2019). Technology Acceptance Model for the Internet Banking Acceptance in Split. *Business Systems Research*, 10(2). <https://doi.org/10.2478/bsrj-2019-022>