Main Article Content

Abstract

Bi rate determination is one of the monetary policies carried out by the government to regulate the macroeconomic level. The determination of the Bi rate serves as one of the references for entrepreneurs in determining steps for business sustainability. In addition, determining the Bi rate can also control inflation by regulating the amount of money circulating in the community. This research implements the ARIMA model to forecast the BI rate in the period December 2023 to April 2024. Based on the results of the tests that have been carried out, using the best variable values, namely comparing AIC, SIC and HQC values in determining the best model, the ARIMA model (1,1,0) was chosen. The results of the forecasting value in this study that the Bi Rate for the next 5 months, starting from December 2023 to April 2024, shows a downtrend in the Bi rate value

Keywords

Forcasting Arima Bi rate

Article Details

How to Cite
Hasanah, U. (2023). Peramalan BI Rate Di Indonesia dengan Metode Time Series Model ARIMA. IHTIYATH : Jurnal Manajemen Keuangan Syariah, 7(2), 141-151. https://doi.org/10.32505/ihtiyath.v7i2.7318

References

  1. Anggraeni, W. (2015). Prediksi tingkat suku Bunga Bank Indonesia (Bi Rate) berdasarkan data Fuzzy Time Series. JABE (Journal of Applied Business and …, 2(I), 49–60.
  2. Ati, A., Shabri, M., Azis, N., & Hamid, A. (2020). Mediating the effects of customer satisfaction and bank reputation on the relationship between services quality and loyalty of islamic banking customers. Malaysian Journal of Consumer and Family Economics, 25.
  3. Budiman, I. (2021). The islamic perspective on the improvement of family economy in the new normal. Samarah, 5(1). https://doi.org/10.22373/sjhk.v5i1.8389
  4. Christina, S. E. (2021). … Bi Rate Menjadi Bi 7-Days Reverse Repo Rate Terhadap Pertumbuhan Penyaluran Kredit Oleh Perbankan Di Indonesia (Sebelum Dan …. Jurnal Ilmiah Mahasiswa FEB.
  5. Fatah, A., Arif, I., Farchan, F., Varbi Sununianti, V., Amalia Madi, R., Satria, E., Fourianalistyawati, E., Bempah, I., Ermayanti Susilo, D., Ridho Kismawadi, E., Nopriadi, Sumiati, R., Novita Sari, I., Kusnadi Kusumah Putra, F., Fajrin, H., Danius, E. E., Subekti, P., Noviyanty, Y., Siregar, N., … Puspa Dewi, S. (2019). Application of knuth-morris-pratt algorithm on web based document search. Journal of Physics: Conference Series, 1175(1). https://doi.org/10.1088/1742-6596/1175/1/012117
  6. Iskandar, I., & Kurlillah, A. (2023). Roles of Waqf in Supporting Economy Recovery Post Covid-19 Pandemic. ZISWAF: Jurnal Zakat Dan Wakaf, 10(01), 65–82.
  7. Kamal, S., Hidayah, N., Junaidi, & Tabrani. (2022). Expectations of Paying Zakat on Profession during the Pandemic. Journal of Positive School Psychology, 6(2).
  8. Kamal, S., Muslem, M., Mulyadi, M., Kassim, E. S., & Zulkifly, M. U. (2022). Is Loan Shark an Alternative? The Intentions to Take a Loan from Loan Sharks in Indonesia. Shirkah: Journal of Economics and Business, 7(2). https://doi.org/10.22515/shirkah.v7i2.487
  9. Kismawadi, E. R. (2023a). Contribution of Islamic banks and macroeconomic variables to economic growth in developing countries: vector error correction model approach (VECM). Journal of Islamic Accounting and Business Research. https://doi.org/10.1108/JIABR-03-2022-0090
  10. Kismawadi, E. R. (2023b). Improving Islamic bank performance through agency cost and dual board governance. Journal of Islamic Accounting and Business Research. https://doi.org/10.1108/JIABR-01-2023-0035
  11. Paramasatya, W., Ratnawati, D. E., & Dewi, C. (2017). Peramalan Suku Bunga Acuan (BI Rate) Menggunakan Metode Fuzzy Time Series dengan Percentage Change Sebagai Universe of Discourse. Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(11), 1285–1294.
  12. Paramitha, N. F., Agustiningrum, N. H., Ganesh, N. M., & Rusyda, H. A. (2021). Peramalan Tingkat Bunga BI-7 Day Repo Rate Menggunakan Arima Serta Dampaknya Bagi Investor. Kinerja: Jurnal Ekonomi Dan Manajemen, 18(2), 184–191.
  13. Ratri, D. A., & Munawar. (2022). Analisis Pengaruh Suku Bunga (Bi Rate), Jumlah Uang Beredar Dan Ekspor Terhadap Inflasi Di Indonesia Pada Masa Pandemi Covid-19. Journal of Development Economic and Social Studies, 1(1), 28–70.
  14. Rianto, M., & Yunis, R. (2021). Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Random Forest. Paradigma - Jurnal Komputer Dan Informatika, 23(1). https://doi.org/10.31294/p.v23i1.9781
  15. Suparti, S., & Sa’adah, A. F. (2015). Analisis Data Inflasi Indonesia Menggunakan Model Autoregressive Integrated Moving Average (Arima) Dengan Penambahan Outlier. Media Statistika, 8(1), 1–11. https://doi.org/10.14710/medstat.8.1.1-11

DB Error: Unknown column 'Array' in 'where clause'