Main Article Content
Abstract
Inflation are related to changes in the price of an item that have the potential to change the market in the short term and create a certain monetary policy. Inflation data tends to fluctuate from time to time, so it is interesting to make useful predictions to provide information on future inflation rates. The consumer price index indicator, which is the best benchmark for inflation, is the main inflation indicator. This research focuses on time series modeling using the autoregressive integrated and moving average (ARIMA) method. Fluctuating data results in the desired model determination and forecasting is carried out so that it is likely to occur in the future. The results showed that inflation predictions for the period January 2010 to December 2022 were obtained using the autoarima model (0,1,1)(1,0,2)[12] with an error value of MAPE 6.61%, RMSE of 0.42 with a p-test level value α=5%. From the prediction results, it is obtained that the average in the first quarter is 5.44% in the coming year and gradually decreases with a range of 3% - 4%.
Keywords
Article Details
References
- REFERENCES
- Arif Widianto. (2023). Inflasi Indonesia 10 Tahun. Bolasalju.Com. https://www.bolasalju.com/artikel/inflasi-indonesia-10-tahun/
- Djawoto, D. (2017). Peramalan Laju Inflasi dengan Metode Auto Regressive Integrated Moving Average (ARIMA). EKUITAS (Jurnal Ekonomi Dan Keuangan), 14(4). https://doi.org/10.24034/j25485024.y2010.v14.i4.2190
- Ha, J., Kose, M. A., & Ohnsorge, F. (2019). Understanding Inflation in Emerging and Developing Economies. In SSRN Electronic Journal.
- Kondo Lembang, F. (2017). Prediksi Laju Inflasi Di Kota Ambon Menggunakan Metode ARIMA Box Jenkins. STATISTIKA: Journal of Theoretical Statistics and Its Applications, 16(2), 95–102.
- Meyler, a, Kenny, G., & Quinn, T. (1998). Forecasting Irish inflation using ARIMA models. Central Bank and Financial Services Authority of Ireland Technical Paper Series, 3(July).
- Mohamed, B., Abdulrahman, A., Yousef, A., Ahmed, A., Elshazali, A., & Abdellah, Y. (2018). Forecasting of Sudan Inflation Rates using ARIMA Model. International Journal of Economics and Financial Issues, 8(3).
- Qasim, T. B., Ali, H., Malik, N., & Liaquat, M. (2021). Forecasting Inflation Applying ARIMA Model with GARCH Innovation: The Case of Pakistan. Journal of Accounting and Finance in Emerging Economies, 7(2).
- Setiartiti, L., & Hapsari, Y. (2019). Determinants of Inflation Rate in Indonesia. Jurnal Ekonomi & Studi Pembangunan, 20(1), 112–123.
- Simanungkalit, E. F. B. (2020). Pengaruh Inflasi terhadap Pertumbuhan Ekonomi di Indonesia. Journal of Management : Small and Medium Enterprises (SMEs), 13(3), 327–340.
- Tarmidi, L. T. (2003). Krisis Moneter Indonesia: Sebab, Dampak, Peran IMF dan Saran. Buletin Ekonomi Moneter Dan Perbankan, 1(4), 1–25.
- Wang, W., Shi, Y., & Luo, R. (2019). Sparse Representation Based Approach to Prediction for Economic Time Series. IEEE Access, 7.
- Yohana Artha Uly. (2022). DPR Sahkan UU APBN 2023, Pertumbuhan Ekonomi Ditargetkan 5,3 Persen. Https://Money.Kompas.Com/Read/2022/09/29/ 181000726/Dpr-Sahkan-UU-Apbn-2023-Pertumbuhan-Ekonomi-Ditargetkan-5-3-Persen.