Main Article Content

Abstract

Poverty tends to occur in developing countries, including Indonesia. Poverty is a complex problem and requires a comprehensive approach in efforts to eradicate it. Handling poverty must be carried out appropriately and cover various aspects of people's lives. The negative impacts of poverty not only affect people's welfare, but also hinder economic development in the long term. Poverty has a negative effect on the economy and social welfare. To determine the prediction of poverty levels, one approach that can be taken is a time series model (time series). In this research, method Autoregressive Integrated Moving Average (ARIMA) is used for analysis and forecasting poverty levels. So that it can provide insight into poverty behavior and take appropriate steps both in controlling and alleviating poverty. ARIMA is a time series forecasting method that is suitable for forecasting various variables quickly, simply, cheaply and accurately. The research results show that the poverty rate for the next three years (2024-2026) is 14.17%, 13.93% and 13.72%, respectively. The ARIMA model is proven to be able to provide fairly accurate predictions and follow actual trends, making it useful for forecasting. The ARIMA(1,1,1) model can be used as a reference for future forecasting. The process of forecasting poverty levels does not only focus on predicting statistical figures, but also includes an in-depth analysis of the factors that cause poverty and the economic dynamics that influence it. This allows the government to develop policies that are more effective and responsive to social and economic changes occurring in society.

Keywords

Time Series ARIMA Poverty

Article Details

How to Cite
Safwandi, & Zefri Maulana. (2024). Model Time Series untuk Meramalkan Tingkat Kemiskinan di Aceh. Jurnal Investasi Islam, 9(1), 1-19. https://doi.org/10.32505/jii.v9i1.8868

References

  1. Baihaqi, A., Romano, R., Hamid, A. H., Indra, I., Kasimin, S., Ulya, Z., Bakar, B. A., Aziz, A., Idawanni, I., & Wahyuni, I. (2023). Coconut farming development strategy in Bireuen Regency using hierarchy process analysis. IOP Conference Series: Earth and Environmental Science, 1183(1). https://doi.org/10.1088/1755-1315/1183/1/012026
  2. Chalil, R. D., & Dharmmesta, B. S. (2015). The Role of Consumer Involvement as a Moderating Variable: The Relationship Between Consumer Satisfaction and Corporate Image on Service Loyalty. Journal of Asian Scientific Research, 5(6), 303–319. https://doi.org/10.18488/journal.2/2015.5.6/2.6.303.319
  3. Chrisharja, A. G., & Hapsi, A. (2023). The Effect of Inflation, Unemployment, and Poverty on Economic Growth in Indonesia. Dinasti International Journal Of Digital Business Management, 4(1), 779–787.
  4. Dinarjito, A. (2022). Penyusunan Forecasting Laporan Keuangan Menggunakan Weighted Moving Average Dan Penilaian Penyertaan Modal Negara Pada BUMN Konstruksi. Jurnal Pajak Dan Keuangan Negara (PKN), 4(1), 147–165. https://doi.org/10.31092/jpkn.v4i1.1766
  5. Hamid, A., Majid, M. S. A., & Khairunnisah, L. (2017). An Empirical Re-Examination of the Islamic Banking Performance in Indonesia. International Journal of Academic Research in Economics and Management Sciences, 6(2), 219–232. https://doi.org/10.6007/ijarems/v6-i2/3022
  6. Hamid, A., Mardhiah, A., & Midesia, S. (2019). Factors Influencing the Intention To Stock Investment Among Muslim Investors in Langsa. Share: Jurnal Ekonomi Dan Keuangan Islam, 8(2), 142. https://doi.org/10.22373/share.v8i2.4679
  7. Hariadi, W. (2021). ENTHUSIASTIC INTERNATIONAL JOURNAL OF STATISTICS AND DATA SCIENCE Application of ARIMA Model for Forecasting Additional Positive Cases of Covid-19 in Jember Regency. 1(1), 20–27. https://journal.uii.ac.id/ENTHUSIASTIC
  8. Hartati, H. (2017). Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi. Jurnal Matematika Sains Dan Teknologi, 18(1), 1–10. https://doi.org/10.33830/jmst.v18i1.163.2017
  9. Hasri, D. A. (2020). Metode Autoregressive Integrated Moving Average (Arima) Untuk Peramalan Tingkat Kemiskinan Di Kabupaten Sumbawa. Jurnal Riset Kajian Teknologi & Lingkungan, Vol. 3(Issue 2), 196–202.
  10. Jannah, N., Bahri, M. I., Kismawadi, E. R., & Handriana, T. (2024). The Effect of Green Brand Image and Green Satisfaction on Green Brand Equity Mediated Green Trust Outpatient’s. Quality - Access to Success, 25(198), 381–390. https://doi.org/10.47750/QAS/25.198.40
  11. Kamisah, K., Arida, A., & Indra, I. (2022). Faktor-Faktor Yang Mempengaruhi Kemiskinan Pedesaan Di Provinsi Aceh. Jurnal Ilmiah Mahasiswa Pertanian, 7(2), 168–176. https://doi.org/10.17969/jimfp.v7i2.19650
  12. Kismawadi, E. R. (2024a). Contribution of Islamic banks and macroeconomic variables to economic growth in developing countries: vector error correction model approach (VECM). Journal of Islamic Accounting and Business Research, 15(2), 306–326. https://doi.org/10.1108/JIABR-03-2022-0090
  13. Kismawadi, E. R. (2024b). Sustainable Islamic financial inclusion: The ethical challenges of generative AI in product and service development. Exploring the Ethical Implications of Generative AI, 237–258. https://doi.org/10.4018/979-8-3693-1565-1.ch013
  14. Kismawadi, E. R., Aditchere, J., & Libeesh, P. C. (2024). Integration of Artificial Intelligence Technology in Islamic Financial Risk Management for Sustainable Development. 53–71. https://doi.org/10.1007/978-3-031-47324-1_4
  15. Prasetyono, R. I., & Anggraini, D. (2021). Analisis Peramalan Tingkat Kemiskinan Di Indonesia Dengan Model Arima. Jurnal Ilmiah Informatika Komputer, 26(2), 95–110. https://doi.org/10.35760/ik.2021.v26i2.3699
  16. Primandari, N. R. (2018). Pengaruh pertumbuhan ekonomi, inflasi dan pengangguran terhadap tingkat kemiskinan di Sumatera Selatan. Jurnal Ekonomi Pembangunan, 16(1), 1–10. https://ejournal.unsri.ac.id/index.php/jep/index
  17. Rizki, A. (2023). Aplikasi Model ARIMA dalam Peramalan Data Harga Emas Dunia Tahun 2010-2022. Jurnal Statistika Dan Aplikasinya, 7(1), 84–92. https://doi.org/10.21009/jsa.07108
  18. Safwandi. (2023). Time Series Model Using Autoregressive Integrated Moving Average ( ARIMA ) Method For Inflation In Indonesia. Jurnal Investsi Islam, 8(1), 13–25.
  19. Sari, F. M., Notodiputro, K. A., & Sartono, B. (2021). Analisis Tingkat Kemiskinan Di Provinsi Sumatera Barat Melalui Pendekatan Regresi Terkendala (Ridge Regression, Lasso, Dan Elastic Net). STATISTIKA Journal of Theoretical Statistics and Its Applications, 21(1), 29–36. https://doi.org/10.29313/jstat.v21i1.7836
  20. Sari, M., Hisan, K., & Kismawadi, E. R. (2019). Pengaruh Inflasi, Pengangguran, Kemiskinan Dan Pembiayaan Perbankan Syariah Terhadap Pertumbuhan Ekonomi Di Indonesia. Jurnal At-Tijarah, 1(1), 55–76.
  21. Setiawan, I., & Jamaliah, J. (2023). Analisis Kebijakan Publik Dalam Mengatasi Kemiskinan Di Indonesia. ETNIK: Jurnal Ekonomi Dan Teknik, 2(5), 399–405. https://doi.org/10.54543/etnik.v2i5.188
  22. Ula, T. (2024). Gravity Model Analysis Of Indonesia's Trade Role Within OIC Economies. SHARE: Jurnal Ekonomi Dan Keuangan Islam, 13(1), 258–275. https://doi.org/10.22373/share.v13i1.20994
  23. Yuliansyah. (2022). Analysis of Poverty in Indonesia. Budapest International Research and Critics Institute-Journal (BIRCI-Journal), 5(1), 7368–7373.