Main Article Content

Abstract

The digital revolution has profoundly transformed economic, social, and cultural structures, demanding the emergence of new competencies such as mathematical literacy and computational thinking as essential foundations of 21st-century education. This study aims to analyze the conceptual interrelation and pedagogical implications of integrating these competencies within the context of learning in the digital economy era. Employing a qualitative exploratory approach through a systematic literature review, data were obtained from scholarly publications over the past decade that address the integration of mathematical literacy and computational thinking. The findings reveal that their integration enhances logical reasoning, problem-solving, and data-driven decision-making skills, while the adoption of artificial intelligence (AI) technologies further supports adaptive and reflective learning environments. Nevertheless, the success of this integration requires a holistic pedagogical framework grounded in humanistic values to prevent the decline of students’ critical and independent thinking abilities. Therefore, the integration of mathematical literacy and computational thinking can be viewed as a strategic transformation in education to cultivate digitally literate, creative, and adaptive generations prepared for the challenges of a knowledge-based economy.

Keywords

Computational Thinking, Digital Economy, Mathematical Literacy,Pedagogical Approach

Article Details

How to Cite
Ariq, A., Nursalam, Sri Sulasteri, & Andi Kusumayanti. (2025). Integrasi Literasi Matematika dan Pemikiran Komputasi: Strategi Penguatan Kompetensi Digital Dalam Pendidikan Abad Ke-21. Jurnal Ilmiah Pendidikan Matematika Al Qalasadi, 9(2), 141-149. https://doi.org/10.32505/qalasadi.v9i2.11974

References

  1. Cui, W., Xue, Z., & Thai, K. (2018). Performance Comparison of AI-Based Adaptive Learning Systems in China. Conference: Chinese Automation Congress (CAC), 1–8. https://doi.org/10.1109/CAC.2018.8623327
  2. Dedema, M., & Ma, R. (2024). The collective use and perceptions of generative AI tools in digital humanities research: Survey-based results. ARVIX, 1(2). https://doi.org/https://doi.org/10.48550/arXiv.2404.12458
  3. Ersozlu, Z., Swartz, M., & Skourdoumbis, A. (2023). Developing Computational Thinking through Mathematics: An Evaluative Scientific Mapping. Education Sciences, 13(4), 1–15. https://doi.org/https://doi.org/10.3390/educsci13040422
  4. Gobrecht, A., Tuma, F., Möller, M., Zöller, T., Zakhvatkin, M., Wuttig, A., Sommerfeldt, H., & Schütt, S. (2024). Beyond Human Subjectivity And Error: A Novel AI Grading System. ARVIX, 1, 1–16. https://doi.org/https://doi.org/10.48550/arXiv.2405.04323
  5. Gogh, E., & Kovari, A. (2025). Homework in the AI era: cheating, challenge, or change? Frontiers in Education, 10, 01–04. https://doi.org/https://doi.org/10.3389/feduc.2025.1609518
  6. Gupta, S., Dharamshi, R., & Kakde, V. (2024). An Impactful and Revolutionized Educational Ecosystem using Generative AI to Assist and Assess the Teaching and Learning benefits, Fostering the Post-Pandemic Requirements. Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE). https://doi.org/10.1109/ic-ETITE58242.2024.10493370
  7. Joseph, O. B., Onwuzulike, O. C., & Shitu, K. (2024). Digital transformation in education: Strategies for effective implementation. World Journal of Advanced Research and Reviews, 23(2), 2785–2799. https://doi.org/https://doi.org/10.30574/wjarr.2024.23.2.2668
  8. Knie, L., Standl, B., & Schwarzer, S. (2022). First experiences of integrating computational thinking into a blended learning in-service training program for STEM teachers. Computer Applications in Engineering Education, 30(5), 1–17. https://doi.org/10.1002/cae.22529
  9. Kosmyna, N., Hauptmann, E., Yuan, Y. T., Situ, J., Liao, X.-H., Beresnitzky, A. V., Braunstein, I., & Maes, P. (2025). Your Brain on ChatGPT: Accumulation of Cognitive Debt when Using an AI Assistant for Essay Writing Task. ARVIX, 1. https://doi.org/https://doi.org/10.48550/arXiv.2506.08872
  10. Lademann, J., Henze, J., & Becker-Genschow, S. (2024). Building Bridges: AI Custom Chatbots as Mediators between Mathematics and Physics. ARVIX, 1. https://doi.org/https://doi.org/10.48550/arXiv.2412.15747
  11. Lehtonen, D., Parviainen, M., Kaarto, H., Räsänen, P., & Dagien?, V. (2025). Development Of Digital Learning Materials To Promote Computational Thinking Skills In Grades 1–9. Proceedings of INTED2025 Conference, 6643–6650. https://doi.org/10.21125/inted.2025.1720
  12. Luo, Q. Z., & Hsiao-Chin, L. Y. (2023). The Influence of AI-Powered Adaptive Learning Platforms on Student Performance in Chinese Classrooms. Journal of Education, 6(3), 1–12. https://doi.org/https://doi.org/10.53819/81018102t4181
  13. Luo, Y., Liu, T., Pang, P. C.-I., McKay, D., Chen, Z., Buchanan, G., & Chang, S. (2025). Enhanced Bloom’s Educational Taxonomy for Fostering Information Literacy in the Era of Large Language Models. ARVIX, 1. https://doi.org/https://doi.org/10.48550/arXiv.2503.19434
  14. Mandal, B. et al. (2024). Contextualizing Generated Citation Texts. arXiv.
  15. Nordby, S. K., Bjerke, A. H., & Mifsud, L. (2022). Computational Thinking in the Primary Mathematics Classroom: a Systematic Review. Digital Experiences in Mathematics Education, 8, 27–49.
  16. Parviz, M. (2024). AI in education: Comparative perspectives from STEM and Non-STEM instructors. Computers and Education Open, 6, 1–12. https://doi.org/https://doi.org/10.1016/j.caeo.2024.100190
  17. Rahmi, R., Amalina, Z., Andriansyah, A., & Rodgers, A. (2024). Does it really help? Exploring the impact of Al-Generated writing assistant on the students’ English writing. Studies in English Language and Education, 11(2), 998–1012. https://doi.org/https://doi.org/10.24815/siele.v11i2.35875
  18. Shin, N., Bowers, J., Roderick, S., McIntyre, C., Stephens, A. L., Eidin, E., Krajcik, J., & Damelin, D. (2022). A framework for supporting systems thinking and computational thinking through constructing models. 50, 933–960.
  19. Syafei, M., Tambunan, A., S, W. Q., Zam’an, P., Kosasih, A., Mubarok, E. ., Firmansyah, M. I., Surahman, C., Hakim, L., Hermawan, W., Fakhruddin, A., Sudarso, S., Nurhayati, Solehudin, R. H., Sahroni, Nurudin, A., Trisolvena, M. N., Hartati, W., Zulfahmi, … Kamaluddin, M. (2024). Inovasi Pendidikan dalam Multi Perspektif (W. Q. S (ed.); 1st ed.). LEKKAS.
  20. Taneja, K., Maiti, P., Kakar, S., Guruprasad, P., Rao, S., & Goel, A. K. (2024). Jill Watson: A Virtual Teaching Assistant powered by ChatGPT. ARVIX, 1, 1–14. https://doi.org/https://doi.org/10.48550/arXiv.2405.11070 Focus to learn more
  21. Varghese, N. N., Jose, B., Bindhumol, T., Cleetus, A., & Nair, S. B. (2025). The power duo: unleashing cognitive potential through human-AI synergy in STEM and non-STEM education. Frontiers in Education, 01–04. https://doi.org/10.3389/feduc.2025.1534582
  22. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining Computational Thinking for Mathematics and Science Classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
  23. Xue, Z. (2023). Exploring Vygotsky’s Zone of Proximal Development in Pedagogy: A Critique of a Learning Event in the Business/Economics Classroom. International Journal of Education and Humanities, 9(3), 166–168. https://doi.org/https://doi.org/10.54097/ijeh.v9i3.10506
  24. Ye, H., Liang, B., Ng, O.-L., & Chai, C. S. (2023). Integration of computational thinking in K-12 mathematics education: a systematic review on CT-based mathematics instruction and student learning. International Journal of STEM Education, 3.
  25. Yuan, P., & Yang, X. (2024). Exploration of the model of deepen industry–education integration in the digital economy era. Journal of Internet and Digital Economics, 4(3), 179–186. https://doi.org/10.1108/JIDE-07-2024-0030

DB Error: Unknown column 'Array' in 'WHERE'