Main Article Content
Abstract
This research aims to describe the mathematical problem-solving abilities of junior secondary level students in terms of each student's adversary quotient level. This type of research is qualitative research with descriptive methods. The data collection techniques used in this research were tests, questionnaires, and interviews. The participants in this research were three junior high school students in Bogor Regency. The instruments used in this research were an adversity quotient questionnaire, mathematical problem-solving ability test questions, and interviews. The results of the research show that there are several relationships between the adversity quotient and students' mathematical problem-solving abilities. Climbers, campers, and quitters-type students have high, medium, and moderate mathematical problem-solving skills. However, the interview results show that quitters tend to give up easily when faced with complex problems. So that future researchers should study these findings further and increase the number of participants so that the research results are more valid.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright Notice
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the Jurnal Ilmiah Pendidikan Matematika Al Qalasadi of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the Jurnal Ilmiah Pendidikan Matematika Al Qalasadi published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access)
References
- Ahmad, S. (2017). Metode Penelitian Metode Penelitian. Metode Penelitian Kualitatif, 3(17), 43. http://repository.unpas.ac.id/30547/5/BAB III.pdf
- Fadilla, I., Usman, U., & Anwar, A. (2022). Kemampuan Pemecahan Masalah Matematis Melalui Tahapan Krulik dan Rudnick Ditinjau dari Gaya Belajar Siswa MTsS Al-Manar. Pedagogy, 8(1), 150–162.
- Farida, L., Tamam, B., Hadi, W. P., Qomaria, N., & Yasir, M. (2023). Pengaruh Model Double Loop Problem Solving (DLPS) dengan Metode Gallery Walk Terhadap Kemampuan Pemecahan Masalah Siswa. Natural Science Education Research, 6(2), 64–77. https://journal.trunojoyo.ac.id/nser/article/view/16599%0Ahttps://journal.trunojoyo.ac.id/nser/article/download/16599/8546
- Fauziah, N. S., & Kurniasih, M. D. (2022). Analisis Kemampuan Pemecahan Masalah Pada Materi Spldv Tingkat Smp Ditinjau Pada Gaya Belajar. Sigma, 7(2), 113.
- Irsal, I. L. (2020). Kemampuan Pemecahan Masalah Matematis melalui Pembelajaran Penemuan Terbimbing. ARITHMETIC: Academic Journal of Math, 2(1), 47.
- Ma’arif, A., Syaiful, S., & Hasibuan, M. H. E. (2020). Pengaruh Model Pembelajaran Learning Cycle 5E terhadap Kemampuan Pemecahan Masalah Matematika Ditinjau dari Adversity Quotient Siswa. Jurnal Didaktik Matematika, 7(1), 32–44.
- Masfingatin, T. (2013). Proses Berpikir Siswa Sekolah Menengah Pertama Dalam Memecahkan Masalah Matematika Ditinjau Dari Adversity Quotient. JIPM (Jurnal Ilmiah Pendidikan Matematika), 2(1). https://doi.org/10.25273/jipm.v2i1.491
- Muhtarom, Elly, P. S., & Sutrisno. (2023). Analisis Kemampuan Pemecahan Masalah Matematis Siswa Pada Materi Bilangan Bulat Ditinjau dari Adversity Quotient. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(2), 1258–1273.
- Nurlaila, S., Sariningsih, R., & Maya, R. (2018). Analisis Kemampuan Komunikasi Matematis Siswa Smp Terhadap Soal-Soal Bangun Ruang Sisi Datar. JPMI (Jurnal Pembelajaran Matematika Inovatif), 1(6), 1113.
- Polya, G. (1973). How To Solve It: A New Aspect of Mathematical Method. Princeton University Press.
- Purnamasari, I., & Setiawan, W. (2019). Analisis Kemampuan Pemecahan Masalah Matematis Siswa SMP pada Materi SPLDV Ditinjau dari Kemampuan Awal Matematika. Journal of Medives : Journal of Mathematics Education IKIP Veteran Semarang, 3(2), 207.
- Rahmi, D., Putra, M. A., & Kurniati, A. (2021). Analisis Kemampuan Pemecahan Masalah Matematis Berdasarkan Adversity Quotient (AQ) Siswa SMA. Suska Journal of Mathematics Education, 7(2), 85.
- Ratna, & Yahya, A. (2022). Kecemasan Matematika terhadap Kemampuan Pemecahan Masalah Matematika Siswa Kelas XI. Plusminus: Jurnal Pendidikan Matematika, 2(3), 471–482. https://journal.institutpendidikan.ac.id/index.php/plusminus/article/view/pv2n3_12
- Rusmania, S. A., Kurniati, N., Triutami, T. W., & Azmi, S. (2023). ANALISIS KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA DITINJAU DARI ADVERSITY QUOTIENT PADA MATERI POLA BILANGAN SISWA KELAS VIII SMPN 3 PRINGGARATA TAHUN AJARAN 2023/2024. Pendas: Jurnal Ilmiah Pendidikan Dasar, 08, 5267–5281.
- Saraswati, P. M. S., & Agustika, G. N. S. (2020). Kemampuan Berpikir Tingkat Tinggi Dalam Menyelesaikan Soal HOTS Mata Pelajaran Matematika. Jurnal Ilmiah Sekolah Dasar, 4(2), 257.
- Serianti, N. W., Ketut Suarni, N., & Gading, K. (2020). JBKI UNDIKSHA Adversity Quotient Scale Development Of Vocational School Student Pengembangan Skala Adversity Qutient Peserta Didik Smk. Jurnal Bimbingan Konseling Indonesia, 1, pp XX-XX. https://ejournal.undiksha.ac.id/index.php/JJBK/index
- Stoltz, P. G. (2000). Adversity Quotient: Turning Obstacles into Opportunities. John Wiley & Sons.
- Thamsir, T., Silalahi, D. W., & Soesanto, R. H. (2019). Upaya Meningkatkan Kemampuan Pemecahan Masalah Soal Non-Rutin Pada Materi Persamaan Dan Pertidaksamaan Linear Satu Variabel Dengan Penerapan Metode Peer Tutoring [Efforts in Improving Mathematical Problem-Solving Skills of Non-Routine Problems of One-Vari. JOHME: Journal of Holistic Mathematics Education, 3(1), 96.
- Wahyu, T. D. (2020). “Analisis Kemampuan Pemecahan Masalah Matematika Berdasarkan Langkah Polya Ditinjau Dari Adversity Quotient (AQ) Tipe Quitter Pada Materi Sistem Persamaan Linear Dua Variabel Kelas VIIIE SMPN 22 Kota Jambi. Https:/Repository.Unja.Ac.Id/Id/Eprint/10782.
- Wayan, W. I., & Adi, H. A. (2019). Modul Penyusun Soal HOTS Matematika. Direktorat Jendral Pendidikan Dasar Dan Menengah.
- Widyastuti, R. (2015). Proses Berpikir Siswa Dalam Menyelesaikan Masalah Matematika Berdasarkan Teori Polya Ditinjau Dari Adversity Quotient Tipe Climber. Al-Jabar : Jurnal Pendidikan Matematika, 6(2), 183–194. https://doi.org/10.24042/ajpm.v6i2.48
- Yani, M., Ikhsan, M., & Marwan. (2016). PROSES BERPIKIR SISWA SEKOLAH MENENGAH PERTAMA DALAM MEMECAHKAN MASALAH MATEMATIKA BERDASARKANLANGKAH-LANGKAH POLYA Muhammad Yani , M . Ikhsan , dan Marwan Program Studi Pendidikan Matematika , Universitas Syiah Kuala. Jurnal Pendidikan Matematika, 10(1), 43–58. http://dx.doi.org/10.22342/jpm.10.1.3278.42-57